TensorFlow函数:get_collection
2020-09-07 09:59 更新
函数:tf.get_collection
get_collection(
key,
scope=None
)
定义在:tensorflow/python/framework/ops.py.
参见指南:构建图>图形集合
使用默认图形来包装 Graph.get_collection().
参数:
- key:收集的关键.例如,GraphKeys 类包含许多集合的标准名称.
- scope:(可选)如果提供,则筛选结果列表为仅包含 name 属性匹配 re.match 使用的项目.如果一个范围是提供的,并且选择或 re. match 意味着没有特殊的令牌过滤器的范围,则不会返回没有名称属性的项.
返回值:
集合中具有给定 name 的值的列表,或者如果没有值已添加到该集合中,则为空列表.该列表包含按其收集顺序排列的值.
函数:tf.get_collection_ref
get_collection_ref(key)
定义在:tensorflow/python/framework/ops.py.
参见指南:构建图>图形集合
使用默认图表来包装 Graph.get_collection_ref().
参数:
- key:收集的关键.例如,GraphKeys 类包含许多标准的集合名称.
返回值:
集合中具有给定 name 的值的列表,或者如果没有值已添加到该集合中,则为空列表.请注意,这将返回集合列表本身,可以修改该列表来更改集合.
举个例子:
# 在'My-TensorFlow-tutorials-master/02 CIFAR10/cifar10.py'代码中
variables = tf.get_collection(tf.GraphKeys.VARIABLES)
for i in variables:
print(i)
>>> <tf.Variable 'conv1/weights:0' shape=(3, 3, 3, 96) dtype=float32_ref>
<tf.Variable 'conv1/biases:0' shape=(96,) dtype=float32_ref>
<tf.Variable 'conv2/weights:0' shape=(3, 3, 96, 64) dtype=float32_ref>
<tf.Variable 'conv2/biases:0' shape=(64,) dtype=float32_ref>
<tf.Variable 'local3/weights:0' shape=(16384, 384) dtype=float32_ref>
<tf.Variable 'local3/biases:0' shape=(384,) dtype=float32_ref>
<tf.Variable 'local4/weights:0' shape=(384, 192) dtype=float32_ref>
<tf.Variable 'local4/biases:0' shape=(192,) dtype=float32_ref>
<tf.Variable 'softmax_linear/softmax_linear:0' shape=(192, 10) dtype=float32_ref>
<tf.Variable 'softmax_linear/biases:0' shape=(10,) dtype=float32_ref>
tf.get_collection会列出key里所有的值。
进一步地:
tf.GraphKeys 的点后可以跟很多类, 比如 VARIABLES 类(包含所有variables), 比如 REGULARIZATION_LOSSES。
具体 tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) 的使用:
def easier_network(x, reg):
""" A network based on tf.contrib.learn, with input `x`. """
with tf.variable_scope('EasyNet'):
out = layers.flatten(x)
out = layers.fully_connected(out,
num_outputs=200,
weights_initializer = layers.xavier_initializer(uniform=True),
weights_regularizer = layers.l2_regularizer(scale=reg),
activation_fn = tf.nn.tanh)
out = layers.fully_connected(out,
num_outputs=200,
weights_initializer = layers.xavier_initializer(uniform=True),
weights_regularizer = layers.l2_regularizer(scale=reg),
activation_fn = tf.nn.tanh)
out = layers.fully_connected(out,
num_outputs=10, # Because there are ten digits!
weights_initializer = layers.xavier_initializer(uniform=True),
weights_regularizer = layers.l2_regularizer(scale=reg),
activation_fn = None)
return out
def main(_):
mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
# Make a network with regularization
y_conv = easier_network(x, FLAGS.regu)
weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'EasyNet')
print("")
for w in weights:
shp = w.get_shape().as_list()
print("- {} shape:{} size:{}".format(w.name, shp, np.prod(shp)))
print("")
reg_ws = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES, 'EasyNet')
for w in reg_ws:
shp = w.get_shape().as_list()
print("- {} shape:{} size:{}".format(w.name, shp, np.prod(shp)))
print("")
# Make the loss function `loss_fn` with regularization.
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
loss_fn = cross_entropy + tf.reduce_sum(reg_ws)
train_step = tf.train.AdamOptimizer(1e-4).minimize(loss_fn)
main()
>>> - EasyNet/fully_connected/weights:0 shape:[784, 200] size:156800
- EasyNet/fully_connected/biases:0 shape:[200] size:200
- EasyNet/fully_connected_1/weights:0 shape:[200, 200] size:40000
- EasyNet/fully_connected_1/biases:0 shape:[200] size:200
- EasyNet/fully_connected_2/weights:0 shape:[200, 10] size:2000
- EasyNet/fully_connected_2/biases:0 shape:[10] size:10
- EasyNet/fully_connected/kernel/Regularizer/l2_regularizer:0 shape:[] size:1.0
- EasyNet/fully_connected_1/kernel/Regularizer/l2_regularizer:0 shape:[] size:1.0
- EasyNet/fully_connected_2/kernel/Regularizer/l2_regularizer:0 shape:[] size:1.0
根据下面的代码的输出可知, 在图上的所有regularization都会集中保存到tf.GraphKeys.REGULARIZATION_LOSSES去。
for w in reg_ws:
shp = ....