TensorFlow定义张量连接到CheckNumericsOp
#版权所有2015 TensorFlow作者.版权所有.
#
#根据Apache许可证2.0版(“许可证”)许可;
#你不能使用这个文件,除非符合许可证.
#您可以获得许可证的副本
#
#http ://www.apache.org/licenses/LICENSE-2.0
#
#除非适用法律要求或书面同意软件
根据许可证分发的#分发在“按原样”基础上,
#无明示或暗示的任何形式的担保或条件.
#查看有关权限的特定语言的许可证
#许可证下的限制.
# =============================================== =============================
“”“将所有的 half, float and double 张量连接到CheckNumericsOp.”“”
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
def verify_tensor_all_finite(t, msg, name=None):
"""Assert that the tensor does not contain any NaN's or Inf's.
Args:
t: Tensor to check.
msg: Message to log on failure.
name: A name for this operation (optional).
Returns:
Same tensor as `t`.
"""
with ops.name_scope(name, "VerifyFinite", [t]) as name:
t = ops.convert_to_tensor(t, name="t")
with ops.colocate_with(t):
verify_input = array_ops.check_numerics(t, message=msg)
out = control_flow_ops.with_dependencies([verify_input], t)
return out
def add_check_numerics_ops():
"""Connect a `check_numerics` to every floating point tensor.
`check_numerics` operations themselves are added for each `half`, `float`,
or `double` tensor in the graph. For all ops in the graph, the
`check_numerics` op for all of its (`half`, `float`, or `double`) inputs
is guaranteed to run before the `check_numerics` op on any of its outputs.
Returns:
A `group` op depending on all `check_numerics` ops added.
"""
check_op = []
# This code relies on the ordering of ops in get_operations().
# The producer of a tensor always comes before that tensor's consumer in
# this list. This is true because get_operations() returns ops in the order
# added, and an op can only be added after its inputs are added.
for op in ops.get_default_graph().get_operations():
for output in op.outputs:
if output.dtype in [dtypes.float16, dtypes.float32, dtypes.float64]:
message = op.name + ":" + str(output.value_index)
with ops.control_dependencies(check_op):
check_op = [array_ops.check_numerics(output, message=message)]
return control_flow_ops.group(*check_op)