阅读(8k) 书签 (0)

TensorFlow如何添加Linear和DNN估算器训练模型

2018-09-30 17:11 更新

#版权所有2017 TensorFlow作者.版权所有.

#根据Apache许可证版本2.0(“许可证”)许可;

#除非符合许可证,否则您不得使用此文件.

#您可以获得许可证的副本

#http      ://www.apache.org/licenses/LICENSE-2.0

#除非适用法律要求或书面同意软件

根据许可证分发的#分发在“按原样”基础上,

#无明示或暗示的任何种类的保证或条件.

#查看有关权限的特定语言的许可证

许可证下的#限制.

# =============================================== =============================

""TensorFlow Linear 和 DNN 估算器加入训练模型.""

from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import six from tensorflow.python.estimator import estimator from tensorflow.python.estimator import model_fn from tensorflow.python.estimator.canned import head as head_lib from tensorflow.python.estimator.canned import optimizers from tensorflow.python.feature_column import feature_column as feature_column_lib from tensorflow.python.framework import ops from tensorflow.python.layers import core as core_layers from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import nn from tensorflow.python.ops import partitioned_variables from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.summary import summary from tensorflow.python.training import sync_replicas_optimizer from tensorflow.python.training import training_util # The default learning rates are a historical artifact of the initial # implementation. _DNN_LEARNING_RATE = 0.001 _LINEAR_LEARNING_RATE = 0.005 def _check_no_sync_replicas_optimizer(optimizer): if isinstance(optimizer, sync_replicas_optimizer.SyncReplicasOptimizer): raise ValueError( 'SyncReplicasOptimizer does not support multi optimizers case. ' 'Therefore, it is not supported in DNNLinearCombined model. ' 'If you want to use this optimizer, please use either DNN or Linear ' 'model.') def _linear_learning_rate(num_linear_feature_columns): """Returns the default learning rate of the linear model. The calculation is a historical artifact of this initial implementation, but has proven a reasonable choice. Args: num_linear_feature_columns: The number of feature columns of the linear model. Returns: A float. """ default_learning_rate = 1. / math.sqrt(num_linear_feature_columns) return min(_LINEAR_LEARNING_RATE, default_learning_rate) def _add_layer_summary(value, tag): summary.scalar('%s/fraction_of_zero_values' % tag, nn.zero_fraction(value)) summary.histogram('%s/activation' % tag, value) def _dnn_linear_combined_model_fn( features, labels, mode, head, linear_feature_columns=None, linear_optimizer='Ftrl', dnn_feature_columns=None, dnn_optimizer='Adagrad', dnn_hidden_units=None, dnn_activation_fn=nn.relu, dnn_dropout=None, input_layer_partitioner=None, config=None): """Deep Neural Net and Linear combined model_fn. Args: features: dict of `Tensor`. labels: `Tensor` of shape [batch_size, 1] or [batch_size] labels of dtype `int32` or `int64` in the range `[0, n_classes)`. mode: Defines whether this is training, evaluation or prediction. See `ModeKeys`. head: A `Head` instance. linear_feature_columns: An iterable containing all the feature columns used by the Linear model. linear_optimizer: string, `Optimizer` object, or callable that defines the optimizer to use for training the Linear model. Defaults to the Ftrl optimizer. dnn_feature_columns: An iterable containing all the feature columns used by the DNN model. dnn_optimizer: string, `Optimizer` object, or callable that defines the optimizer to use for training the DNN model. Defaults to the Adagrad optimizer. dnn_hidden_units: List of hidden units per DNN layer. dnn_activation_fn: Activation function applied to each DNN layer. If `None`, will use `tf.nn.relu`. dnn_dropout: When not `None`, the probability we will drop out a given DNN coordinate. input_layer_partitioner: Partitioner for input layer. config: `RunConfig` object to configure the runtime settings. Returns: `ModelFnOps` Raises: ValueError: If both `linear_feature_columns` and `dnn_features_columns` are empty at the same time, or `input_layer_partitioner` is missing, or features has the wrong type. """ if not isinstance(features, dict): raise ValueError('features should be a dictionary of `Tensor`s. ' 'Given type: {}'.format(type(features))) if not linear_feature_columns and not dnn_feature_columns: raise ValueError( 'Either linear_feature_columns or dnn_feature_columns must be defined.') num_ps_replicas = config.num_ps_replicas if config else 0 input_layer_partitioner = input_layer_partitioner or ( partitioned_variables.min_max_variable_partitioner( max_partitions=num_ps_replicas, min_slice_size=64 << 20)) # Build DNN Logits. dnn_parent_scope = 'dnn' if not dnn_feature_columns: dnn_logits = None else: dnn_optimizer = optimizers.get_optimizer_instance( dnn_optimizer, learning_rate=_DNN_LEARNING_RATE) _check_no_sync_replicas_optimizer(dnn_optimizer) if not dnn_hidden_units: raise ValueError( 'dnn_hidden_units must be defined when dnn_feature_columns is ' 'specified.') dnn_partitioner = ( partitioned_variables.min_max_variable_partitioner( max_partitions=num_ps_replicas)) with variable_scope.variable_scope( dnn_parent_scope, values=tuple(six.itervalues(features)), partitioner=dnn_partitioner): with variable_scope.variable_scope('input', partitioner=input_layer_partitioner): net = feature_column_lib.input_layer( features=features, feature_columns=dnn_feature_columns) for layer_id, num_hidden_units in enumerate(dnn_hidden_units): with variable_scope.variable_scope( 'hiddenlayer_%d' % layer_id, values=(net,)) as dnn_hidden_layer_scope: net = core_layers.dense( net, units=num_hidden_units, activation=dnn_activation_fn, kernel_initializer=init_ops.glorot_uniform_initializer(), name=dnn_hidden_layer_scope) if dnn_dropout is not None and mode == model_fn.ModeKeys.TRAIN: net = core_layers.dropout(net, rate=dnn_dropout, training=True) _add_layer_summary(net, dnn_hidden_layer_scope.name) with variable_scope.variable_scope( 'logits', values=(net,)) as dnn_logits_scope: dnn_logits = core_layers.dense( net, units=head.logits_dimension, activation=None, kernel_initializer=init_ops.glorot_uniform_initializer(), name=dnn_logits_scope) _add_layer_summary(dnn_logits, dnn_logits_scope.name) linear_parent_scope = 'linear' if not linear_feature_columns: linear_logits = None else: linear_optimizer = optimizers.get_optimizer_instance( linear_optimizer, learning_rate=_linear_learning_rate(len(linear_feature_columns))) _check_no_sync_replicas_optimizer(linear_optimizer) with variable_scope.variable_scope( linear_parent_scope, values=tuple(six.itervalues(features)), partitioner=input_layer_partitioner) as scope: linear_logits = feature_column_lib.linear_model( features=features, feature_columns=linear_feature_columns, units=head.logits_dimension) _add_layer_summary(linear_logits, scope.name) # Combine logits and build full model. if dnn_logits is not None and linear_logits is not None: logits = dnn_logits + linear_logits elif dnn_logits is not None: logits = dnn_logits else: logits = linear_logits def _train_op_fn(loss): """Returns the op to optimize the loss.""" train_ops = [] global_step = training_util.get_global_step() if dnn_logits is not None: train_ops.append( dnn_optimizer.minimize( loss, var_list=ops.get_collection( ops.GraphKeys.TRAINABLE_VARIABLES, scope=dnn_parent_scope))) if linear_logits is not None: train_ops.append( linear_optimizer.minimize( loss, var_list=ops.get_collection( ops.GraphKeys.TRAINABLE_VARIABLES, scope=linear_parent_scope))) train_op = control_flow_ops.group(*train_ops) with ops.control_dependencies([train_op]): with ops.colocate_with(global_step): return state_ops.assign_add(global_step, 1) return head.create_estimator_spec( features=features, mode=mode, labels=labels, train_op_fn=_train_op_fn, logits=logits) class DNNLinearCombinedClassifier(estimator.Estimator): """An estimator for TensorFlow Linear and DNN joined classification models. Note: This estimator is also known as wide-n-deep. Example: ```python numeric_feature = numeric_column(...) sparse_column_a = categorical_column_with_hash_bucket(...) sparse_column_b = categorical_column_with_hash_bucket(...) sparse_feature_a_x_sparse_feature_b = crossed_column(...) sparse_feature_a_emb = embedding_column(sparse_id_column=sparse_feature_a, ...) sparse_feature_b_emb = embedding_column(sparse_id_column=sparse_feature_b, ...) estimator = DNNLinearCombinedClassifier( # wide settings linear_feature_columns=[sparse_feature_a_x_sparse_feature_b], linear_optimizer=tf.train.FtrlOptimizer(...), # deep settings dnn_feature_columns=[ sparse_feature_a_emb, sparse_feature_b_emb, numeric_feature], dnn_hidden_units=[1000, 500, 100], dnn_optimizer=tf.train.ProximalAdagradOptimizer(...)) # To apply L1 and L2 regularization, you can set optimizers as follows: tf.train.ProximalAdagradOptimizer( learning_rate=0.1, l1_regularization_strength=0.001, l2_regularization_strength=0.001) # It is same for FtrlOptimizer. # Input builders def input_fn_train: # returns x, y pass estimator.train(input_fn=input_fn_train, steps=100) def input_fn_eval: # returns x, y pass metrics = estimator.evaluate(input_fn=input_fn_eval, steps=10) def input_fn_predict: # returns x, None pass predictions = estimator.predict(input_fn=input_fn_predict) ``` Input of `train` and `evaluate` should have following features, otherwise there will be a `KeyError`: * for each `column` in `dnn_feature_columns` + `linear_feature_columns`: - if `column` is a `_CategoricalColumn`, a feature with `key=column.name` whose `value` is a `SparseTensor`. - if `column` is a `_WeightedCategoricalColumn`, two features: the first with `key` the id column name, the second with `key` the weight column name. Both features' `value` must be a `SparseTensor`. - if `column` is a `_DenseColumn`, a feature with `key=column.name` whose `value` is a `Tensor`. Loss is calculated by using softmax cross entropy. """ def __init__(self, model_dir=None, linear_feature_columns=None, linear_optimizer='Ftrl', dnn_feature_columns=None, dnn_optimizer='Adagrad', dnn_hidden_units=None, dnn_activation_fn=nn.relu, dnn_dropout=None, n_classes=2, weight_column=None, label_vocabulary=None, input_layer_partitioner=None, config=None): """Initializes a DNNLinearCombinedClassifier instance. Args: model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. linear_feature_columns: An iterable containing all the feature columns used by linear part of the model. All items in the set must be instances of classes derived from `FeatureColumn`. linear_optimizer: An instance of `tf.Optimizer` used to apply gradients to the linear part of the model. Defaults to FTRL optimizer. dnn_feature_columns: An iterable containing all the feature columns used by deep part of the model. All items in the set must be instances of classes derived from `FeatureColumn`. dnn_optimizer: An instance of `tf.Optimizer` used to apply gradients to the deep part of the model. Defaults to Adagrad optimizer. dnn_hidden_units: List of hidden units per layer. All layers are fully connected. dnn_activation_fn: Activation function applied to each layer. If None, will use `tf.nn.relu`. dnn_dropout: When not None, the probability we will drop out a given coordinate. n_classes: Number of label classes. Defaults to 2, namely binary classification. Must be > 1. weight_column: A string or a `_NumericColumn` created by `tf.feature_column.numeric_column` defining feature column representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. If it is a string, it is used as a key to fetch weight tensor from the `features`. If it is a `_NumericColumn`, raw tensor is fetched by key `weight_column.key`, then weight_column.normalizer_fn is applied on it to get weight tensor. label_vocabulary: A list of strings represents possible label values. If given, labels must be string type and have any value in `label_vocabulary`. If it is not given, that means labels are already encoded as integer or float within [0, 1] for `n_classes=2` and encoded as integer values in {0, 1,..., n_classes-1} for `n_classes`>2 . Also there will be errors if vocabulary is not provided and labels are string. input_layer_partitioner: Partitioner for input layer. Defaults to `min_max_variable_partitioner` with `min_slice_size` 64 << 20. config: RunConfig object to configure the runtime settings. Raises: ValueError: If both linear_feature_columns and dnn_features_columns are empty at the same time. """ linear_feature_columns = linear_feature_columns or [] dnn_feature_columns = dnn_feature_columns or [] self._feature_columns = ( list(linear_feature_columns) + list(dnn_feature_columns)) if not self._feature_columns: raise ValueError('Either linear_feature_columns or dnn_feature_columns ' 'must be defined.') if n_classes == 2: head = head_lib._binary_logistic_head_with_sigmoid_cross_entropy_loss( # pylint: disable=protected-access weight_column=weight_column, label_vocabulary=label_vocabulary) else: head = head_lib._multi_class_head_with_softmax_cross_entropy_loss( # pylint: disable=protected-access n_classes, weight_column=weight_column, label_vocabulary=label_vocabulary) def _model_fn(features, labels, mode, config): return _dnn_linear_combined_model_fn( features=features, labels=labels, mode=mode, head=head, linear_feature_columns=linear_feature_columns, linear_optimizer=linear_optimizer, dnn_feature_columns=dnn_feature_columns, dnn_optimizer=dnn_optimizer, dnn_hidden_units=dnn_hidden_units, dnn_activation_fn=dnn_activation_fn, dnn_dropout=dnn_dropout, input_layer_partitioner=input_layer_partitioner, config=config) super(DNNLinearCombinedClassifier, self).__init__( model_fn=_model_fn, model_dir=model_dir, config=config) class DNNLinearCombinedRegressor(estimator.Estimator): """An estimator for TensorFlow Linear and DNN joined models for regression. Note: This estimator is also known as wide-n-deep. Example: ```python numeric_feature = numeric_column(...) sparse_column_a = categorical_column_with_hash_bucket(...) sparse_column_b = categorical_column_with_hash_bucket(...) sparse_feature_a_x_sparse_feature_b = crossed_column(...) sparse_feature_a_emb = embedding_column(sparse_id_column=sparse_feature_a, ...) sparse_feature_b_emb = embedding_column(sparse_id_column=sparse_feature_b, ...) estimator = DNNLinearCombinedRegressor( # wide settings linear_feature_columns=[sparse_feature_a_x_sparse_feature_b], linear_optimizer=tf.train.FtrlOptimizer(...), # deep settings dnn_feature_columns=[ sparse_feature_a_emb, sparse_feature_b_emb, numeric_feature], dnn_hidden_units=[1000, 500, 100], dnn_optimizer=tf.train.ProximalAdagradOptimizer(...)) # To apply L1 and L2 regularization, you can set optimizers as follows: tf.train.ProximalAdagradOptimizer( learning_rate=0.1, l1_regularization_strength=0.001, l2_regularization_strength=0.001) # It is same for FtrlOptimizer. # Input builders def input_fn_train: # returns x, y pass estimator.train(input_fn=input_fn_train, steps=100) def input_fn_eval: # returns x, y pass metrics = estimator.evaluate(input_fn=input_fn_eval, steps=10) def input_fn_predict: # returns x, None pass predictions = estimator.predict(input_fn=input_fn_predict) ``` Input of `train` and `evaluate` should have following features, otherwise there will be a `KeyError`: * for each `column` in `dnn_feature_columns` + `linear_feature_columns`: - if `column` is a `_CategoricalColumn`, a feature with `key=column.name` whose `value` is a `SparseTensor`. - if `column` is a `_WeightedCategoricalColumn`, two features: the first with `key` the id column name, the second with `key` the weight column name. Both features' `value` must be a `SparseTensor`. - if `column` is a `_DenseColumn`, a feature with `key=column.name` whose `value` is a `Tensor`. Loss is calculated by using mean squared error. """ def __init__(self, model_dir=None, linear_feature_columns=None, linear_optimizer='Ftrl', dnn_feature_columns=None, dnn_optimizer='Adagrad', dnn_hidden_units=None, dnn_activation_fn=nn.relu, dnn_dropout=None, label_dimension=1, weight_column=None, input_layer_partitioner=None, config=None): """Initializes a DNNLinearCombinedRegressor instance. Args: model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. linear_feature_columns: An iterable containing all the feature columns used by linear part of the model. All items in the set must be instances of classes derived from `FeatureColumn`. linear_optimizer: An instance of `tf.Optimizer` used to apply gradients to the linear part of the model. Defaults to FTRL optimizer. dnn_feature_columns: An iterable containing all the feature columns used by deep part of the model. All items in the set must be instances of classes derived from `FeatureColumn`. dnn_optimizer: An instance of `tf.Optimizer` used to apply gradients to the deep part of the model. Defaults to Adagrad optimizer. dnn_hidden_units: List of hidden units per layer. All layers are fully connected. dnn_activation_fn: Activation function applied to each layer. If None, will use `tf.nn.relu`. dnn_dropout: When not None, the probability we will drop out a given coordinate. label_dimension: Number of regression targets per example. This is the size of the last dimension of the labels and logits `Tensor` objects (typically, these have shape `[batch_size, label_dimension]`). weight_column: A string or a `_NumericColumn` created by `tf.feature_column.numeric_column` defining feature column representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. If it is a string, it is used as a key to fetch weight tensor from the `features`. If it is a `_NumericColumn`, raw tensor is fetched by key `weight_column.key`, then weight_column.normalizer_fn is applied on it to get weight tensor. input_layer_partitioner: Partitioner for input layer. Defaults to `min_max_variable_partitioner` with `min_slice_size` 64 << 20. config: RunConfig object to configure the runtime settings. Raises: ValueError: If both linear_feature_columns and dnn_features_columns are empty at the same time. """ linear_feature_columns = linear_feature_columns or [] dnn_feature_columns = dnn_feature_columns or [] self._feature_columns = ( list(linear_feature_columns) + list(dnn_feature_columns)) if not self._feature_columns: raise ValueError('Either linear_feature_columns or dnn_feature_columns ' 'must be defined.') def _model_fn(features, labels, mode, config): return _dnn_linear_combined_model_fn( features=features, labels=labels, mode=mode, head=head_lib. # pylint: disable=protected-access _regression_head_with_mean_squared_error_loss( label_dimension=label_dimension, weight_column=weight_column), linear_feature_columns=linear_feature_columns, linear_optimizer=linear_optimizer, dnn_feature_columns=dnn_feature_columns, dnn_optimizer=dnn_optimizer, dnn_hidden_units=dnn_hidden_units, dnn_activation_fn=dnn_activation_fn, dnn_dropout=dnn_dropout, input_layer_partitioner=input_layer_partitioner, config=config) super(DNNLinearCombinedRegressor, self).__init__( model_fn=_model_fn, model_dir=model_dir, config=config)