AIGC 文本分类提示词
2023-07-10 14:19 更新
目前,我们已经会使用简单的指令来执行任务。 作为提示工程师,您需要提供更好的指令。 此外, 您也会发现,对于更负责的使用场景,仅提供指令是远远不够的。 所以,您需要思考如何在提示词中包含相关语境和其他不同要素。 同样,你还可以提供其他的信息,如输入数据和示例。
可以通过以下示例体验文本分类:
提示词
Classify the text into neutral, negative or positive. // 将文本按中立、负面或正面进行分类
Text: I think the food was okay.
Sentiment:
输出结果
Neutral
我们给出了对文本进行分类的指令,语言模型做出了正确响应,判断文本类型为 'Neutral'。 如果我们想要语言模型以指定格式作出相应, 比如,我们想要它返回 neutral 而不是 Neutral, 那我们要如何做呢? 我们有多种方法可以实现这一点。 此例中,我们主要是关注绝对特性,因此,我们提示词中包含的信息越多,响应结果就会越好。 我们可以使用以下示例来校正响应结果:
提示词
Classify the text into neutral, negative or positive.
Text: I think the vacation is okay.
Sentiment: neutral
Text: I think the food was okay.
Sentiment:
输出结果
neutral
完美! 这次模型返回了 neutral,这正是我们想要的特定标签。 提示词中的示例使得模型可以给出更具体的响应。
有时给出具体的指令十分重要,可以通过以下示例感受这一点:
提示词
Classify the text into nutral, negative or positive.
Text: I think the vacation is okay.
Sentiment:
输出结果
Neutral
这时候你知道给出具体指令的重要性了吧?