阅读(1.9k) 书签 (0)

AI人工智能 从时间序列数据中提取统计信息

2020-09-24 11:00 更新

如果需要得出一些重要结论,需要从一个给定的数据中提取一些统计数据。 平均值,方差,相关性,最大值和最小值是这些统计中的一部分。 如果您想从给定的时间序列数据中提取此类统计信息,则可以使用以下代码 -

平均值

可以使用 mean()函数来查找平均值,如下所示 -

timeseries.mean()

例子代码的输出是 -

-0.11143128165238671

最大值

可以使用 max()函数来查找最大值,如下所示 -

timeseries.max()

那么在讨论的例子中观察的输出是 -

3.4952999999999999

最小值

可以使用 min() 函数来查找最小值,如下所示 -

timeseries.min()

那么在讨论的例子中观察的输出是 -

-4.2656999999999998

一次性获得所有

如果您想一次计算所有统计数据,则可以使用 describe() 函数,如下所示 -

timeseries.describe()

那么观察上面例子的输出是 -

count   817.000000
mean     -0.111431
std       1.003151
min      -4.265700
25%      -0.649430
50%      -0.042744
75%       0.475720
max       3.495300
dtype: float64

重新取样

可以将数据重新采样到不同的时间频率。 执行重新采样的两个参数是 -

  • 时间段
  • 方法

使用 mean()重新采样

以下代码使用 mean() 方法重新采样数据,这是默认方法 -

timeseries_mm = timeseries.resample("A").mean()
timeseries_mm.plot(style = 'g--')
plt.show()

然后,可以观察下面使用 mean() 重采样输出的图形 - img

使用median()重新采样

使用以下代码使用 median() 方法重新采样数据 -

timeseries_mm = timeseries.resample("A").median()
timeseries_mm.plot()
plt.show()

然后,观察下面的图形是使用 median() 重新采样的输出 -

img

滚动平均值

使用下面的代码来计算滚动(移动)的平均值 -

timeseries.rolling(window = 12, center = False).mean().plot(style = '-g')
plt.show()

然后,观察滚动(移动)平均值的输出图表 -

img